Online Learning: A Brief Intro.

Chen Huang

Data Mining Lab, Big Data Research Center, UESTC huangc.uestc@gmail.com

- Online learning
- Online learning methods
- Applications _{list}
- Conclusion
- Clues for my next work?

内容杂而泛,有兴趣的同学可以线下深入了解~

Traditional (offline) learning

Challenge: Real-time stream data

- Evolving / Concept drift
- Constraints in terms of memory and running time
- Tradeoff between Accuracy and Efficiency
- Distributed application and Result visualization

Online learning

Model update, real-time, scalability

Online Learning

Online learning task

- For *t*=1, 2, ..., T • Receive **X**_t
 - Predict $\widehat{y}_t = \operatorname{sgn}(f_t(\mathbf{x}_t))$
 - Receive y_t
 - Suffer loss $\ell(y_t, f_t(\mathbf{x}_t))$
 - Update $f_t(\mathbf{x}) \to f_{t+1}(\mathbf{x})$

Goal: To minimize:

$$\sum_{t=1}^T \ell(y_t, f_t(\mathbf{x}_t))$$

- Given all the data, we could find the optimal classifier, denoted as T

$$f^* = \arg\min_{f \in H} \sum_{t=1}^{I} L(y_t, f(x_t))$$

- Online learning **regrets** that why wouldn't I choose the f^* at the first place.

$$regret = \frac{1}{T} \sum_{t=1}^{T} (L(y_t, f_t(x_t)) - L(y_t, f^*(x_t)))$$

 We wish the regret to be small and bounded, and it's noregret if

$$\lim_{T \to \infty} \frac{regret(T)}{T} \to 0$$

Applications

Online update

– When to update model?

- Mistake driven
- Confidence in prediction

- How to update model?
 - Re-training ? 🗶
 - Basically,

.

$$W_t = W_{t-1} + \Delta$$

Linear Classifier Revisit From Batch to Online

Perceptron

Minimize the sum of the **functional margins** (-_-!) of those misclassified data points.

Stochastic Gradient Descent Revisit

SGD

 Stochastic approximation of the gradient descent method for minimizing an objective function that is written as a sum of differentiable sub-functions:

$$\min\sum_{i=1}^m f_i(x)$$

$$SGD: \quad x^{(k)} = x^{(k-1)} - t_k g_r^{(k-1)}(x)$$
$$GD: \quad x^{(k)} = x^{(k-1)} - t_k \sum_{i=1}^m g_i^{(k-1)}(x) \quad where \ g_i^{(k-1)} \in \partial f_i^{(k-1)}$$

SGD for perceptron

- Objective

$$L(w,b) = -\sum_{x_i \in M} y_i(wx_i + b)$$

- Solver

$$\nabla_{w}L(w,b) = -\sum_{x_i \in M} y_i x_i \qquad \nabla_{b}L(w,b) = -\sum_{x_i \in M} y_i$$

– Update

$$w \leftarrow w + \gamma y_i x_i \qquad b \leftarrow b + \gamma y_i$$

SGD for perceptron

Online Perceptron

SGD for online update

- 1. Start with the all-zeroes weight vector $\mathbf{w}_1 = \mathbf{0}$, and initialize t to 1.
- 2. Given example \mathbf{x} , predict positive iff $\mathbf{w}_t \cdot \mathbf{x} > 0$.
- 3. On a mistake, update as follows:
 - Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{x}$.
 - Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{x}$.

 $t \leftarrow t + 1.$

Novikoff Theorem

- For linearly separable dataset
 - Margin is γ
 - $||x|| \le R$
- Then,
 - #mistakes $\leq \left(\frac{R}{\gamma}\right)^2$
 - #update = #mistakes

Bayesian Conjugate Revisit

Conjugate prior

- If the posterior distributions $p(\theta|x)$ are in the same family as the prior distribution $p(\theta)$, the prior and posterior are then called **Conjugate Distributions**
- The prior is called a Conjugate Prior for the likelihood function

Example: Toss a coin Priori: $Beta(\alpha, \beta)$ Likelihood: Bernoulli(p)Posteriori: $Beta(\alpha + heads, \beta + tails)$

Bayesian Online Learning

Sequential update

***Bayesian Online Learning For Non-conjugate Prior**

*Online Bayesian Probit Regression

- Linear Gaussian model (*Kalman Filter*) with $Y_t = \{1, -1\}$

	$P(X_t X_{t-1})$	$P(Y_t X_t)$	$P(X_0)$	Example
Discrete State DM	矩阵形式	Any	π	Hidden Markov Model
Linear Gaussian DM	$N(AX_{t-1} + B, Q)$	$N(HX_t + C, R)$	$N(\mu_0, \epsilon_0)$	Kalman Filter
Non-linear Non-Gaussian DM	f(X _{t-1})	g(X _t)	f(X ₀)	Particle Filter

- KL divergence to approximate Gaussian posterior

≻Linear methods

- ✓ First-order algorithms (Perceptron, Passive-Aggressive)
- ✓ Second-order algorithms (Confidence weighted)
- ✓ Sparse online learning algorithms (FOBOS, RDA, FTRL)

>Non-linear methods

- ✓ Kernel based online learning (Kernel perceptron)
- ✓ Local online learning
- ✓ Deep online learning (-_-!!!)
- *Multiclass online learning
- *Centralized/decentralized distributed online learning

Prior Knowledge Revisit

Subgradient

- g is a **subgradient** of f (not necessarily convex) at x if

 $f(y) \ge f(x) + \nabla g^T (y - x) \quad \forall y$

 $f(x^{\star}) = \inf_{x} f(x) \Longleftrightarrow 0 \in \partial f(x^{\star})$

Prior Knowledge Revist

Passive-Aggressive learning (JMLR 2006)

Utilizes the margin to modify the current classifier.
 The update of the classifier is performed by solving a constrained optimization problem

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \quad \text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) = 0.$$

- **Passive** when hinge loss is zero, $w_{t+1} = w_t$ or

Aggressively forces w_{t+1} to satisfy the constraint $\ell(w_{t+1}; (x_t, y_t)) = 0$ regardless of the step-size required.

s.t.
$$h_i(x) \le 0, i = 1 ..., m$$

 $l_j(x) = 0, j = 1 ..., r$

KKT for PA problem

- Convex Problem + Slater's condition
- Finding the problem's optimum is equivalent to satisfying the KKT condition
- So, for the aggressive part

$$\mathcal{L}(\mathbf{w},\tau) = \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + \tau \big(1 - y_t(\mathbf{w} \cdot \mathbf{x}_t)\big)$$

$$0 = \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \tau) = \mathbf{w} - \mathbf{w}_t - \tau y_t \mathbf{x}_t \qquad \Longrightarrow \qquad \mathbf{w} = \mathbf{w}_t + \tau y_t \mathbf{x}_t.$$

$$\mathcal{L}(\boldsymbol{\tau}) = -\frac{1}{2}\boldsymbol{\tau}^2 \|\mathbf{x}_t\|^2 + \boldsymbol{\tau} \big(1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)\big)$$

$$0 = \frac{\partial \mathcal{L}(\tau)}{\partial \tau} = -\tau \|\mathbf{x}_t\|^2 + (1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)) \implies \tau = \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2}$$

Label noise: PA-I & PA-II

Recall soft margin of SVM

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C\xi \quad \text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \leq \xi \text{ and } \xi \geq 0.$$

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C\xi^2 \quad \text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \leq \xi.$$

PA & PA-I & PA-II

- Closed-form update

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$$

$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2}$$
(PA)
$$\tau_t = \min\left\{C, \frac{\ell_t}{\|\mathbf{x}_t\|^2}\right\}$$
(PA-I)
$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}}$$
(PA-II)

INPUT: aggressiveness parameter C > 0INITIALIZE: $w_1 = (0, ..., 0)$ For t = 1, 2, ...• receive instance: $\mathbf{x}_t \in \mathbb{R}^n$ • predict: $\hat{y}_t = \operatorname{sign}(\mathbf{w}_t \cdot \mathbf{x}_t)$ • receive correct label: $y_t \in \{-1, +1\}$ • suffer loss: $\ell_t = \max\{0, 1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)\}$ • update: 1. set: $\mathbf{\tau}_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2}$ (PA) $\tau_t = \min\left\{C, \frac{\ell_t}{\|\mathbf{x}_t\|^2}\right\}$ (PA-I) $\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}}$ (PA-II) 2. update: $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

Meaning behind the update

- Closed-form update Step size $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

Pros and Cons

Simple and easy to implement
Efficient and scalable for high-dimensional data

Relatively slow convergence rate

Confidence weighted learning (ICML 2008)

- Add parameter confidence to linear classifiers
- Less confident parameters are updated more aggressively than more confident ones

$$w \sim N(\mu, \Sigma)$$

 μ_j : parameter knowledge Σ_{jj} : confidence ($\Sigma_{ij} = 0$)

 Parameter confidence is updated for each new training instance so that the probability of correct classification for that instance under the updated distribution meets a specified confidence.

Confidence weighted learning (ICML 2008)

Linear classifier

$$y = w \cdot x \qquad w \sim N(\mu, \Sigma)$$

– Margin *M*

$$y_i(w \cdot x_i)$$

$$M \sim N(y_i(\mu \cdot x_i), x_i^T \Sigma x_i)$$

– Recall PA

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{w}-\mathbf{w}_t\|^2 \quad \text{s.t.} \quad \ell(\mathbf{w};(\mathbf{x}_t,y_t)) = 0.$$

Correct prediction for CW

 $\Pr_{\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)} \left[M \ge 0 \right] = \Pr_{\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)} \left[y_i \left(\boldsymbol{w} \cdot \boldsymbol{x}_i \right) \ge 0 \right]$

Confidence weighted learning (ICML 2008)

– Recall PA

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{w}-\mathbf{w}_t\|^2 \quad \text{s.t.} \quad \ell(\mathbf{w};(\mathbf{x}_t,y_t)) = 0.$$

– CW

$$\begin{aligned} (\boldsymbol{\mu}_{i+1}, \boldsymbol{\Sigma}_{i+1}) &= \min \, \mathrm{D}_{\mathrm{KL}} \left(\mathcal{N} \left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \right) \, \| \, \mathcal{N} \left(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i \right) \right) \\ & \text{s.t.} \, \Pr \left[y_i \left(\boldsymbol{w} \cdot \boldsymbol{x}_i \right) \geq 0 \right] \geq \eta \;. \end{aligned}$$

- Further form (**Never expected**)

$$\Pr[M \le 0] = \Pr\left[\frac{M - \mu_M}{\sigma_M} \le \frac{-\mu_M}{\sigma_M}\right]$$

Confidence weighted learning (*ICML 2008*) - CW

- $\begin{aligned} (\boldsymbol{\mu}_{i+1}, \boldsymbol{\Sigma}_{i+1}) &= \min \, \mathrm{D}_{\mathrm{KL}} \left(\mathcal{N} \left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \right) \, \| \, \mathcal{N} \left(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i \right) \right) \\ & \text{s.t.} \, \Pr\left[y_i \left(\boldsymbol{w} \cdot \boldsymbol{x}_i \right) \geq 0 \right] \geq \eta \, . \end{aligned}$
- Further form (Never expected) $\longrightarrow N(0,1)$

$$\Pr\left[M \le 0\right] = \Pr\left[\frac{M - \mu_M}{\sigma_M} \le \frac{-\mu_M}{\sigma_M}\right]$$

$$\frac{-\mu_M}{\sigma_M} \le \Phi^{-1} \left(1 - \eta \right) = -\Phi^{-1} \left(\eta \right)$$

$$y_i(\boldsymbol{\mu} \cdot \boldsymbol{x}_i) \ge \phi \sqrt{\boldsymbol{x}_i^\top \Sigma \boldsymbol{x}_i} \quad \phi = \Phi^{-1}(\eta)$$

Confidence weighted learning (*ICML 2008*) - CW

$$(\boldsymbol{\mu}_{i+1}, \boldsymbol{\Sigma}_{i+1}) = \min \frac{1}{2} \log \left(\frac{\det \boldsymbol{\Sigma}_i}{\det \boldsymbol{\Sigma}} \right) + \frac{1}{2} \operatorname{Tr} \left(\boldsymbol{\Sigma}_i^{-1} \boldsymbol{\Sigma} \right) + \frac{1}{2} \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right)^\top \boldsymbol{\Sigma}_i^{-1} \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right) \text{s.t. } y_i(\boldsymbol{\mu} \cdot \boldsymbol{x}_i) \ge \phi \left(\boldsymbol{x}_i^\top \boldsymbol{\Sigma} \boldsymbol{x}_i \right) .$$

– Optimization

Confidence weighted learning (ICML 2008)

– Update

 $w \leftarrow w + \gamma y_i x_i$

Algorithm 1 Variance Algorithm (Approximate) **Input:** confidence parameter $\phi = \Phi^{-1}(\eta)$ initial variance parameter a > 0Initialize: $\mu_1 = \mathbf{0}$, $\Sigma_1 = aI$ for i = 1, 2... do Receive $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$ Large confidence, Set the following variables: small step size α_i as in Lemma 1 $\boldsymbol{\mu}_{i+1} = \boldsymbol{\mu}_i + \alpha_i y_i \boldsymbol{\Sigma}_i \boldsymbol{x}_i \quad (11)$ $\boldsymbol{\Sigma}_{i+1}^{-1} = \boldsymbol{\Sigma}_i^{-1} + 2\alpha_i \phi \ \mathbf{x}_i \mathbf{x}_i^{\top}$ (17)end for

Confidence weighted learning (ICML 2008)

– Update

 $w \leftarrow w + \gamma y_i x_i$

Algorithm 1 Variance Algorithm (Approximate) **Input:** confidence parameter $\phi = \Phi^{-1}(\eta)$ initial variance parameter a > 0Initialize: $\mu_1 = \mathbf{0}$, $\Sigma_1 = aI$ $\alpha_i = \max\left\{\gamma_i, 0\right\}$ for i = 1, 2... do $\gamma_i = \frac{-(1+2\phi M_i) + \sqrt{(1+2\phi M_i)^2 - 8\phi (M_i - \phi V_i)}}{4\pi^2}$ Receive $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$ Set the following variables: $M_i = y_i \left(\boldsymbol{x}_i \cdot \boldsymbol{\mu}_i \right) \quad V_i = \boldsymbol{x}_i^\top \Sigma_i \boldsymbol{x}_i$ α_i as in Lemma 1 $\boldsymbol{\mu}_{i+1} = \boldsymbol{\mu}_i + \alpha_i y_i \Sigma_i \boldsymbol{x}_i \ (11)$ $\Sigma_{i+1}^{-1} = \Sigma_i^{-1} + 2\alpha_i \phi \ \mathbf{x}_i \mathbf{x}_i^{\top} \quad (17)$ **Data-driven** end for parameters 35

Confidence weighted learning

- Cons
 - Non-separable or label noise

$$(\boldsymbol{\mu}_{i+1}, \boldsymbol{\Sigma}_{i+1}) = \min \, \mathrm{D}_{\mathrm{KL}} \left(\mathcal{N} \left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \right) \, \| \, \mathcal{N} \left(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i \right) \right)$$

s.t. $\Pr \left[y_i \left(\boldsymbol{w} \cdot \boldsymbol{x}_i \right) \ge 0 \right] \ge \eta$.

 Adaptive Regularization of Weight Vectors (AROW) (NIPS'09)

 $\mathcal{C}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathrm{D}_{\mathrm{KL}} \left(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \| \mathcal{N} \left(\boldsymbol{\mu}_{t-1}, \boldsymbol{\Sigma}_{t-1} \right) \right) + \frac{\lambda_1 \ell_{\mathrm{h}^2} \left(y_t, \boldsymbol{\mu} \cdot \boldsymbol{x}_t \right)}{\mathrm{Squared hinge loss}} + \frac{\lambda_2 \boldsymbol{x}_t^\top \boldsymbol{\Sigma} \boldsymbol{x}_t}{\boldsymbol{\Sigma}_{ij} \neq 0}$

- Adaptive Regularization for Weight Matrices (AROWA) (ICML'12)
 - Handle the problem of Σ is a huge matrix

Soft confidence weighted learning (ICML 2012)

- Adaptive soft margin
- Recall CW

$$(\boldsymbol{\mu}_{i+1}, \boldsymbol{\Sigma}_{i+1}) = \min \frac{1}{2} \log \left(\frac{\det \boldsymbol{\Sigma}_i}{\det \boldsymbol{\Sigma}} \right) + \frac{1}{2} \operatorname{Tr} \left(\boldsymbol{\Sigma}_i^{-1} \boldsymbol{\Sigma} \right)$$
$$+ \frac{1}{2} \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right)^\top \boldsymbol{\Sigma}_i^{-1} \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right)$$
s.t. $y_i(\boldsymbol{\mu} \cdot \boldsymbol{x}_i) \ge \phi \left(\boldsymbol{x}_i^\top \boldsymbol{\Sigma} \boldsymbol{x}_i \right)$.

Adaptive hinge loss

$$\ell^{\phi} \left(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}); (\mathbf{x}_{t}, y_{t}) \right) = \max \left(0, \boldsymbol{\phi} \sqrt{\mathbf{x}_{t}^{\top} \boldsymbol{\Sigma} \mathbf{x}_{t}} - y_{t} \boldsymbol{\mu} \cdot \mathbf{x}_{t} \right)$$
$$(\boldsymbol{\mu}_{t+1}, \boldsymbol{\Sigma}_{t+1}) = \arg \min_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} D_{KL} \left(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \| \mathcal{N}(\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}) \right)$$
$$s.t. \ \ell^{\phi} \left(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}); (\mathbf{x}_{t}, y_{t}) \right) = 0, \ \boldsymbol{\phi} > 0$$

Soft confidence weighted learning (ICML 2012)

Adaptive soft margin (recall PA-I and PA-II)
SCW-I

$$(\boldsymbol{\mu}_{t+1}, \boldsymbol{\Sigma}_{t+1}) = \arg\min_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} D_{KL} \big(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \| \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) \big) \\ + C\ell^{\phi} \big(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}); (\mathbf{x}_t, y_t) \big)$$

– SCW-II

$$(\boldsymbol{\mu}_{t+1}, \boldsymbol{\Sigma}_{t+1}) = \arg\min_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} D_{KL} \big(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \| \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) \big) \\ + C \ell^{\phi} \big(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}); (\mathbf{x}_t, y_t) \big)^2$$

Soft confidence weighted learning (ICML 2012)

Algorithm	Large	Confi-	Non-	Adaptive
	Margin	dence	Separable	Margin
PA	Yes	No	Yes	No
SOP	No	Yes	Yes	No
IELLIP	No	Yes	Yes	No
\mathbf{CW}	Yes	Yes	No	Yes
AROW	Yes	Yes	Yes	No
NHERD	Yes	Yes	Yes	No
NAROW	Yes	Yes	Yes	No
SCW	Yes	Yes	Yes	Yes

Soft confidence weighted learning (ICML 2012)

Algorithm 1 SCW learning algorithms (SCW) **INPUT:** parameters $C > 0, \eta > 0$. **INITIALIZATION:** $\mu_0 = (0, \ldots, 0)^{\top}, \Sigma_0 = I.$ for $t = 1, \ldots, T$ do Receive an example $\mathbf{x}_t \in \mathbb{R}^d$; Make prediction: $\hat{y}_t = sgn(\boldsymbol{\mu}_{t-1} \cdot \mathbf{x}_t);$ Receive true label y_t ; suffer loss $\ell^{\phi} \left(\mathcal{N}(\boldsymbol{\mu}_{t-1}, \boldsymbol{\Sigma}_{t-1}); (\mathbf{x}_t, y_t) \right);$ if $\ell^{\phi}(\mathcal{N}(\boldsymbol{\mu}_{t-1}, \Sigma_{t-1}); (\mathbf{x}_t, y_t)) > 0$ then $\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t + \alpha_t y_t \Sigma_t \mathbf{x}_t, \Sigma_{t+1} = \Sigma_t - \beta_t \Sigma_t \mathbf{x}_t^T \mathbf{x}_t \Sigma_t$ where α_t and β_t are computed by either Proposition 1 (SCW-I) or Proposition 2 (SCW-II); end if end for

 Like PA-I and PA-II
 ✓ SCW-I limits the biggest step size

 ✓ SCW-II performs feature dimension extension

Pros and Cons

Learn both first order and second order info
 Faster convergence rate

Relatively sensitive to noise **Expensive** for high-dimensional data (*w* and Σ)

Says we have a large matrix Σ (and/or vector w), any troubles??

- Slow prediction
- Storage issue

そ間疼

Motivations

- Sparsity for high-dimensional data
- Faster online prediction
- Test computational cost / test-time constraints
- Space constraints

Methods

- Truncated gradient
- FOBOS
- RDA
- FTRL

 X_1

 X_2

X3

X_n

ß

后面内容不用

纠结,算法名

字混个脸熟吧!

Sparsity

Three options for sparsity

- Simple Coefficient Rounding
 - w_i is small because ?

– L1 norm

- Gradient update has the form a + bwhere *a* and *b* are two floats

- Black-box wrapper feature selection
 - Run an algorithm many times which is particularly undesirable with large data sets

Truncated gradient (JMLR 2009)

- Simple Coefficient Rounding

- If
$$t/K == 1$$
 do

$$f(w_i) = T_0(w_i - \eta \nabla_1 L(w_i, z_i), \theta)$$

Truncated gradient (JMLR 2009)

– L1 norm

Truncated gradient (JMLR 2009)

- Combine simple rounding and L1 norm method
- Perform TG at K^{th} time with gravity parameter $g_i > 0$

TG & simple rounding

If $\alpha \geq \theta$, TG = simple rounding

TG & L1-norm

- If $\theta = \infty$ and K = 1

FOBOS (JMLR 2009)

Minimize $\frac{1}{2} \boldsymbol{w}^{\top} A \boldsymbol{w} + \boldsymbol{c}^{\top} \boldsymbol{w} + \lambda \| \boldsymbol{w} \|_{1}$. True solution: $\boldsymbol{w}^{*} = [-1 \ 0]^{\top}$.

Subgradient

Fobos

FOBOS (JMLR 2009)

Objectives

- Motivation
 - have the iterates w_t attain points of nondifferentiability of the function Ψ

- Two-step update

$$W^{(t+\frac{1}{2})} = W^{(t)} - \eta^{(t)}G^{(t)}$$

$$W^{(t+1)} = \arg\min_{W} \left\{ \frac{1}{2} \left\| W - W^{(t+\frac{1}{2})} \right\|^2 + \eta^{\left(t+\frac{1}{2}\right)} \Psi(W) \right\}$$

FOBOS (JMLR 2009)

- Objectives

$$W^{(t+\frac{1}{2})} = W^{(t)} - \eta^{(t)}G^{(t)}$$

$$W^{(t+1)} = \arg\min_{W} \left\{ \frac{1}{2} \left\| W - W^{(t+\frac{1}{2})} \right\|^{2} + \eta^{\left(t+\frac{1}{2}\right)}\Psi(W) \right\}$$

$$W^{(t+1)} = \arg\min_{W} \left\{ \frac{1}{2} \left\| W - W^{(t)} + \eta^{(t)}G^{(t)} \right\|^{2} + \eta^{\left(t+\frac{1}{2}\right)}\Psi(W) \right\}$$

$$0 \in \partial F(W) = W - W^{(t)} + n^{(t)}G^{(t)} + n^{\left(t+\frac{1}{2}\right)}\partial\Psi(W)$$

$$W^{(t+1)} = W^{(t)} - \eta^{(t)}G^{(t)} - \eta^{\left(t+\frac{1}{2}\right)}\partial\Psi(W^{(t+1)})$$

FOBOS-L1 (JMLR 2009)

New version of TG

Sparse Online Methods Regularized Dual Averaging @Microsoft

RDA (*JMLR 2010*)

- Objectives

 $\{\boldsymbol{\beta}^{(t)}\}_{t\geq 1}$: non-negative & non-decreasing input sequence

Sparse Online Methods Regularized Dual Averaging

RDA (*JMLR 2010*)

- Steps
 - compute a subgradient

$$\mathbf{g}_t = \nabla_{\mathbf{w}} \ell(y_t, \mathbf{w}_t^\top \mathbf{x}_t)$$

– Update average subgradient

$$\bar{\mathbf{g}}_t = \frac{t-1}{t} \bar{\mathbf{g}}_{t-1} + \frac{1}{t} \mathbf{g}_t$$

- Compute the next weight vector

$$\langle \bar{\mathbf{g}}_t, \mathbf{w} \rangle + \lambda \|\mathbf{w}\|_1 + \frac{\beta_t}{2t} \|\mathbf{w}\|_2^2$$

Sparse Online Methods Regularized Dual Averaging

RDA-L1

4

Objectives $W^{(t+1)} = \arg\min_{W} \left\{ \frac{1}{t} \sum_{r=1}^{t} \langle G^{(r)}, W \rangle + \lambda \|W\|_{1} + \frac{\gamma}{2\sqrt{t}} \|W\|_{2}^{2} \right\} |\beta^{(t)} = \gamma \sqrt{t}$

Algorithm 5. Regularized Dual Averaging with L1 Regularization

1 input γ , λ

2 initialize
$$W \in \mathbb{R}^N$$
, $G = 0 \in \mathbb{R}^N$

$$G = \frac{t-1}{t}G + \frac{1}{t}\nabla_W \ell(W, X^{(t)}, y^{(t)})$$

5 refresh W according to

$$w_i^{(t+1)} = \begin{cases} 0 & \text{if } |g_i| < \lambda \\ -\frac{\sqrt{t}}{\gamma} (g_i - \lambda sgn(g_i)) & otherwise \end{cases}$$

6 end

7 return W

Sparse Online Methods Regularized Dual Averaging

RDA-L1 V.S. FOBOS-L1

$$w_{i}^{(t+1)} = \begin{cases} 0 & if \left| w_{i}^{(t)} - \eta^{(t)} g_{i}^{(t)} \right| < \eta^{\left(t + \frac{1}{2}\right)} \lambda \\ \left(w_{i}^{(t)} - \eta^{(t)} g_{i}^{(t)} \right) - \eta^{\left(t + \frac{1}{2}\right)} \lambda sign\left(w_{i}^{(t)} - \eta^{(t)} g_{i}^{(t)} \right) & otherwise \end{cases}$$

$$w_{i}^{(t+1)} = \begin{cases} 0 & \text{if } |\overline{g}_{i}| < \lambda \\ -\frac{\sqrt{t}}{r} (\overline{g}_{i} - \lambda \text{sign}(\overline{g}_{i})) & \text{otherwise} \end{cases}$$

RDA Use the cumulative mean of gradients and it's more aggressive to obtain sparsity

Sparse Online Methods Follow The Regularized Leader @Google

FTRL (AISTATS, 2011)

- Combine FOBOS (accuracy) and RDA (sparsity)

Sparse Online Methods Follow The Regularized Leader

FTRL (COLT'10, AISTATS'11, KDD'13)

 Combine FOBOS (stabilization constraint) and RDA (regularization)

Sparse Online Methods Follow The Regularized Leader

FTRL with L1 & L2 norm

Objectives

Sparse Online Methods Follow The Regularized Leader

FTRL with L1 & L2 norm

Algorithm 1 Per-Coordinate FTRL-Proximal with L_1 and L_2 Regularization for Logistic Regression

#With per-coordinate learning rates of Eq. (2). Input: parameters α , β , λ_1 , λ_2 ($\forall i \in \{1, \ldots, d\}$), initialize $z_i = 0$ and $n_i = 0$ for t = 1 to T do Receive feature vector \mathbf{x}_t and let $I = \{i \mid x_i \neq 0\}$ For $i \in I$ compute

$$w_{t,i} = \begin{cases} 0 & \text{if } |z_i| \le \lambda_1 \\ -\left(\frac{\beta + \sqrt{n_i}}{\alpha} + \lambda_2\right)^{-1} (z_i - \operatorname{sgn}(z_i)\lambda_1) & \text{otherwise.} \end{cases}$$

Predict $p_t = \sigma(\mathbf{x}_t \cdot \mathbf{w})$ using the $w_{t,i}$ computed above Observe label $y_t \in \{0, 1\}$ for all $i \in I$ do $g_i = (p_t - y_t)x_i \quad \# gradient of loss w.r.t. w_i$ $\sigma_i = \frac{1}{\alpha} \left(\sqrt{n_i + g_i^2} - \sqrt{n_i} \right) \quad \# equals \ \frac{1}{\eta_{t,i}} - \frac{1}{\eta_{t-1,i}}$ $z_i \leftarrow z_i + g_i - \sigma_i w_{t,i}$ $n_i \leftarrow n_i + g_i^2$ end for end for

Per-coordinate learning rate $\eta_{t,i}$

$$\eta_{t,i} = \frac{\alpha}{\beta + \sqrt{\sum_{s=1}^{t} g_{s,i}^2}}$$

Says feature *i* varies a lot, (large gradient), then it should have a large $\eta_{t,i}$

Further Topics *Non-linear Online Learning

Online kernel learning

- Objectives $f_t(\cdot) = \sum_{i=1}^{B} \alpha_i^t y_i^t \kappa(\mathbf{x}_i^t, \cdot)$ - Challenges
 - Unbounded support vectors \rightarrow **Budget B**

– Methods

- SV removal (NIPS'03, NIPS'05, Machine Learning'07)
- SV projection (ICML'08)
- SV merging (ICDM'09)
- Kernel approximation (JMLR'16)

$$f(\mathbf{x}) = \sum_{i=1}^{B} \alpha_i \kappa(\mathbf{x}_i, \mathbf{x}) \approx \sum_{i=1}^{B} \alpha_i \mathbf{z}(\mathbf{x}_i)^\top \mathbf{z}(\mathbf{x}) = \mathbf{w}^\top \mathbf{z}(\mathbf{x})$$

Further Topics *Non-linear Online Learning

Local online learning (Pattern Recognition'15)

- Idea
 - Although data is not always globally linearly separable,
 it's still possible that they are locally linearly separable
 - Jointly learning multiple local hyper-planes

 $\mathbf{W}_i = \mathbf{W} + \mathbf{U}_i$

Further Topics *Multi-class Online Learning

Online multi-class learning

- Objectives
 - Computes a similarity score between each prototype and the input instance

- Methods

- Learn a function f^r for each of the classes $r \in Y$
- Similarity-based margin loss

$$l\left(\left\{f^{i}\right\}_{1:k}, x_{t}, y_{t}\right) = \max(0, 1 - r_{t})$$
$$r_{t} = \underset{r \in Y}{\operatorname{argmax}} f_{t}^{r}(x_{t}) - \underset{r \in Y, r \neq y_{t}}{\operatorname{argmax}} f_{t}^{r}(x_{t})$$

Further Topics

More issues to deal with

- Centralized/Decentralized Distributed Online Learning

Applications

Online learning applications

- Online AUC Maximization (AAAI'15)
- Cost-Sensitive online learning (ICDM'12, ICDM'15)
- Online collaborative filtering (ICDM'05)
- Online metric/similarity learning (ICDM'15, ICML'12)
- Online multi-task learning (JMLR'14)
- Online manifold learning (*PKDD'08*)
- Online semi-supervised learning (AAAI'11)
- Online time series prediction (JMLR'13)
- Online NMF (CIKM'16)

Take Home Messages

Online learning

- What is online learning
- Regret analysis ?
- Update rule
 - When to update
 - How to update
- Several famous methods
 - First-order (PA, PA-I, PA-II)
 - Second order (CW, SCW, AROW)
 - Sparsity (RDA, FTRL)
- Focus on the online algorithms of your field or interests

